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Abstract. The S wave kinks of the non-linear equation obtained by Weyl for the Dirac 
field in a mixed theory of gravitation are calculated numerically. It is found that, for 
certain values of the parameters, these kinks represent particles similar to baryons, from 
the kinematical point of view. 

1. Introduction 

In 1950 Weyl found powerful geometric reasons which suggest that the Dirac 
equation must include a non-linear term representing a spin-spin self-coupling of 
gravitational origin. More precisely Weyl studied the Dirac field subject to two 
conditions: invariance of the theory under the Lorentz gauge group and independence 
of the metric and affine properties of space-time geometry (Weyl 1950, Kibble 1961, 
Sciama 1962). The first condition can be satisfied with the introduction in the Dirac 
Lagrangian of a covariant derivative 

Dk$ = hk”  (d,+b 4- &4”,Sjj$), 

where Sij are the generators of the Lorentz group and hk”  and Ai’” are geometric 
fields, which are often called in the physical literature the components of the vierbein 
and local affine connection respectively. They play the same role in the tangent space 
basis X, = bra, as gpv, ragy do in the basis a, = d/dx”. Given hkF and A”,, the 
curvature and torsion tensors, R and C, are determined using the Cartan structural 
equations (Helgason 1962). 

The second condition implies that hk” and Aii, must be treated as independent 
quantities in the variational derivation of the field equations. This procedure is called 
the mixed theory of gravitation (Weyl 1950) and, if only gravitation and electromag- 
netism are present, is completely equivalent to the more usual metric theory. This is 
no longer the case if spinor fields are present. After the introduction of the scalar of 
curvature as the Lagrangian of the geometric fields, Weyl showed that in the flat limit 
one can go over to the Minkowski space-time if the usual linear Dirac equation is 
replaced by 

iY,a,*-m~+2A(~Y,Y5*’)Y”YS* =o,  (1) 
where A = - 3 / 1 6 ~ ,  K being the gravitation constant. Equation (1) will be referred to 
as the Dirac-Weyl equation. Since the space-time is no longer a Riemannian mani- 
fold there is no reason to restrict the geometric Lagrangian to the scalar curvature. 
An attractive possibility is to include invariants constructed with the torsion tensor 
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cik (Hayashi 1968). The simplest of these is C$jk which can be shown to lead to 
the same equation (1) but with a different value of A (Ratiada and Soler 1972). For 
this reason we will consider equation (1) without any assumption about the value of A .  

First of all, equation (1) can be deduced from the Lagrangian density 

L = LD f LNL (2 ) 

where LD is the usual Dirac Lagrangian, and 

Because the four spinors in (3) are equal, LNL can be put in the form (Finkelstein et a1 
195 1): 

L N L  = Ai% ”*6Y”*. (4) 

In its two-dimensional version the corresponding theory is called the Thirring model 
which is at present receiving a great deal of attention (Thirring 1958). 

A similar form of equation: 

iy”a,$ - m+ + 2A ($$)(cl = 0 (5  ) 

was proposed by Soler (1970) as a model of a three-dimensional elementary particle. 
In fact, ( 5 )  can be obtained by the arguments of Weyl in a simple model of the 
universe (Rariada and Soler 1972). It has been used to construct some models of the 
nucleon (Rariada et a1 1974, Ratiada and Vazquez 1976) where the particle appears as 
a kink, solution of ( 5 )  or of an analogous equation which includes a pseudoscalar field 
to account for the mesonic cloud. The main properties of nucleons are fairly well 
described, including the sign of the mass difference in one of the models. It would be 
important to know if these kinks are stable upon collisions, in other words, if they are 
solitons. This is a very difficult problem although calculations of Soler (1977) indicate 
a strong degree of stability. In this paper the S wave kinks of the Dirac-Weyl equation 
will be studied numerically and some of their particle aspects will also be considered. 

2. Numerical solution of the Dirac-Weyl equation 

The Dirac-Weyl equation is not factorisable in spherical coordinates. For this reason 
it was solved in the lowest wave approximation, which can be performed by two 
different methods. The first method consists in making a multipole expansion of the 
Dirac field and obtaining radial equations for each partial wave. After that, one 
neglects all the waves except the Sl/z one which has the form 

where G, F are dimensionless fields. The second method is a variational method in 
which the form (6) of the spinor is substituted in the action integral, the integration 
over the angles is made and the functions F, G are varied. It has been proved by 
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direct computation that the two methods are equivalent and that they lead to the same 
equations: 

G'+[1+R+sgn(A)(F2-fG2)]F= 0, 

F ' + ( 2 / p ) F + [ l  -R+sgn(A)(fF2-G2)]G = 0. 
( 7 )  

The boundary conditions are F(m) = G(w) = 0, in such a way that 

I $*$ d 3 r < m .  

In order to calculate the energy of a solution the energy-momentum tensor was used 

T~~ = $[t,JyaaP$ - (a*t,J)Y"$ - (aat,J)yp$ + t jypaa$] - gmpL (8) 

which gives 

(9 )  
2T 2 E = Too d3r = -[RI1 + sgn(A)(iI~ +xI3)], i lh lm 

where 

I1 = I, (F2 + G2)p2 dp, 

The norm and spin are given by 

a3 m m 

I 2 = L  ( F 2 - G  2 2  ) P  2 dp, I3 = Q F2G2p2  dp. 

(XiTfo-XfTio)d3r,  

which gives 

N 
2 '  

- _  - 

The existence of solutions of (7) seems to depend on the sign of A .  Let us take the case 
A > 0. In order to avoid the singularity at p = 0 equations ( 7 )  were regularised by the 
change p -$ p* = In p. Two different numerical methods were used, namely a Runge- 
Kutta fourth-order method and the Hamming predictor-corrector method, and 
complete agreement between them was found. If the solution is to be regular at the 
origin, F ( 0 )  = 0. For each value of G(0) a solution is obtained. It turns out that there 
is a special value of G(0) which separates the solutions with G(m) = +d(1 -a) from 
those with G(m) = -J(l- 0). This value corresponds to a square integrable solution, 
in other words, to a finite energy state. This procedure was followed in several related 
papers (Finkelstein et a1 1956, Soler 1970), to which we refer for details. 

A scarch for finite energy solutions in the interval -1 < i2< +1, 0 < G(O)< lo5 
resulted in a branch of solutions without nodes but failed to find any solution with 
nodes. If IRl > 1 the solutions do not decay fast enough at infinity. In figure 1 a typical 
solution is shown. In figures 2 and 3 we plot G(0) against R and AmE/2r against R. 
As an indication of the size of the kink the value of (p2)"' is represented in figure 4, as 
a function of 0. 

The results show some curious features. First of all no solution with nodes was 
found. Secondly there are several nodeless solutions for the same value of R in the 
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Figure 1. Shape of the radial functions G(p),  F ( p )  for a typical solution, corresponding to 
R =  0.9. 
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Figure 2. G(0) as a function of R. 
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interval 0.78 < R < 0-94. The curve E ( n )  has a very curious form, a spiral with focus 
at the point R =  0.88859, E = ll*6966/Am. This is in sharp contrast with the (t,&+b)z 
Soler model or with the 44 model. In these cases there seems to exist a branch for 
each number of nodes and only one solution in the same branch for any prescribed 
value of R, a situation with a certain similarity to that of a typical linear Sturm- 
Liouville system. 

In the particle models mentioned previously the physical values of R correspond to 
the minima of €(a). As we see in this model, there seems to be an infinity of such 
minima. The lowest three of them correspond to the following values: 

0 = 0.899 E = 9*0509/Am 

R = 0.892 E = 10*8397/Am 

R =  0.893 E = 11.42471Am. 
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Figure 3. AmEI2n as a function of a. 
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Figure 4. The mean square radius (p2)”* as a function of CL. 

If we try to construct a model of the nucleon we can take m = 670 MeV A- ’ ,  A = 
14.4 GeV-’ t i .  The first minimum then corresponds to: 

E = M,,; N = h;  (r2)1’2 = 0.5 fermi; S, = h /2 ,  

where Mp is the proton mass. The second and third minima have energies of 
1123 MeV and 1184 MeV which fall very close to the masses of the A (1115 MeV) 
and Zo (1192 MeV). It is perhaps a numerical coincidence, but it is interesting to find 
a spectrum of states with masses of the right order of magnitude. We must stress that 
the different minima cannot be considered as the usual excited states since they have 
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no nodes. In this aspect the Soler model again has a different behaviour, as the mass 
of the second minimum (with ode node) is about eight times bigger than that of the 
ground state. 

In the case of A < 0 no solutions were found in the interval 0 < G(0) < 2 X lo5. This 
suggests that they do not exist. 

3. Conclusion 

In conclusion, the independent consideration of the metric and affine properties of 
space-time together with the assumption of PoincarC gauge invariance of the theory, 
proposed by Weyl, implies the existence of spinor kinks, perhaps even solitons, which 
for some values of the parameters have some similarities with the baryons. 
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